MakeItFrom.com
Menu (ESC)

AISI 414 Stainless Steel vs. EN 1.8903 Steel

Both AISI 414 stainless steel and EN 1.8903 steel are iron alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 414 stainless steel and the bottom bar is EN 1.8903 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
19
Fatigue Strength, MPa 430 to 480
330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 550 to 590
390
Tensile Strength: Ultimate (UTS), MPa 900 to 960
630
Tensile Strength: Yield (Proof), MPa 700 to 790
480

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 750
410
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
46
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
2.6
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.1
1.8
Embodied Energy, MJ/kg 29
24
Embodied Water, L/kg 100
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1260 to 1590
620
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32 to 34
22
Strength to Weight: Bending, points 27 to 28
21
Thermal Diffusivity, mm2/s 6.7
12
Thermal Shock Resistance, points 33 to 35
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.015
Carbon (C), % 0 to 0.15
0 to 0.22
Chromium (Cr), % 11.5 to 13.5
0 to 0.35
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 81.8 to 87.3
95 to 99.05
Manganese (Mn), % 0 to 1.0
1.0 to 1.8
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 1.3 to 2.5
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.65
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.22