MakeItFrom.com
Menu (ESC)

EN 1.8903 (S460NL) Steel

EN 1.8903 steel is an alloy steel formulated for primary forming into wrought products. Cited properties are appropriate for the normalized condition. 1.8903 is the EN numeric designation for this material. S460NL is the EN chemical designation.

It has a moderately high electrical conductivity among EN wrought alloy steels. In addition, it has a moderately high embodied energy and a moderately low tensile strength.

The graph bars on the material properties cards below compare EN 1.8903 steel to: EN wrought alloy steels (top), all iron alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Brinell Hardness

190

Elastic (Young's, Tensile) Modulus

190 GPa 27 x 106 psi

Elongation at Break

19 %

Fatigue Strength

330 MPa 48 x 103 psi

Impact Strength: V-Notched Charpy

58 J 43 ft-lb

Poisson's Ratio

0.29

Shear Modulus

73 GPa 11 x 106 psi

Shear Strength

390 MPa 57 x 103 psi

Tensile Strength: Ultimate (UTS)

630 MPa 91 x 103 psi

Tensile Strength: Yield (Proof)

480 MPa 70 x 103 psi

Thermal Properties

Latent Heat of Fusion

250 J/g

Maximum Temperature: Mechanical

410 °C 760 °F

Melting Completion (Liquidus)

1460 °C 2660 °F

Melting Onset (Solidus)

1420 °C 2580 °F

Specific Heat Capacity

470 J/kg-K 0.11 BTU/lb-°F

Thermal Conductivity

46 W/m-K 27 BTU/h-ft-°F

Thermal Expansion

13 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

7.6 % IACS

Electrical Conductivity: Equal Weight (Specific)

8.7 % IACS

Otherwise Unclassified Properties

Base Metal Price

2.6 % relative

Density

7.8 g/cm3 490 lb/ft3

Embodied Carbon

1.8 kg CO2/kg material

Embodied Energy

24 MJ/kg 10 x 103 BTU/lb

Embodied Water

51 L/kg 6.0 gal/lb

Common Calculations

Resilience: Ultimate (Unit Rupture Work)

110 MJ/m3

Resilience: Unit (Modulus of Resilience)

620 kJ/m3

Stiffness to Weight: Axial

13 points

Stiffness to Weight: Bending

24 points

Strength to Weight: Axial

22 points

Strength to Weight: Bending

21 points

Thermal Diffusivity

12 mm2/s

Thermal Shock Resistance

18 points

Alloy Composition

Among alloy steels, the composition of EN 1.8903 steel is notable for containing a comparatively high amount of manganese (Mn) and including niobium (Nb). Manganese is used to improve hardenability, hot workability, and surface quality. There is some loss of ductility and weldability, however. Niobium is primarily used to improve yield strength.

Iron (Fe)Fe 95 to 99.05
Manganese (Mn)Mn 1.0 to 1.8
Nickel (Ni)Ni 0 to 0.85
Silicon (Si)Si 0 to 0.65
Copper (Cu)Cu 0 to 0.6
Chromium (Cr)Cr 0 to 0.35
Carbon (C)C 0 to 0.22
Vanadium (V)V 0 to 0.22
Molybdenum (Mo)Mo 0 to 0.13
Niobium (Nb)Nb 0 to 0.060
Titanium (Ti)Ti 0 to 0.060
Phosphorus (P)P 0 to 0.030
Nitrogen (N)N 0 to 0.027
Sulfur (S)S 0 to 0.025
Aluminum (Al)Al 0 to 0.015

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Similar Alloys

Further Reading

EN 10025-3: Hot rolled products of structural steels - Part 3: Technical delivery conditions for normalized rolled weldable fine grain structural steels

Welding Metallurgy, 2nd ed., Sindo Kou, 2003

Manufacture and Uses of Alloy Steels, Henry D. Hibbard, 2005

Ferrous Materials: Steel and Cast Iron, Hans Berns and Werner Theisen, 2008

Steels: Processing, Structure, and Performance, 2nd ed., George Krauss, 2015