MakeItFrom.com
Menu (ESC)

AISI 416 Stainless Steel vs. 535.0 Aluminum

AISI 416 stainless steel belongs to the iron alloys classification, while 535.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 416 stainless steel and the bottom bar is 535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230 to 320
70
Elastic (Young's, Tensile) Modulus, GPa 190
67
Elongation at Break, % 13 to 31
10
Fatigue Strength, MPa 230 to 340
70
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
25
Shear Strength, MPa 340 to 480
190
Tensile Strength: Ultimate (UTS), MPa 510 to 800
270
Tensile Strength: Yield (Proof), MPa 290 to 600
140

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 680
170
Melting Completion (Liquidus), °C 1530
630
Melting Onset (Solidus), °C 1480
570
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 30
100
Thermal Expansion, µm/m-K 9.9
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
23
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
79

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 1.9
9.4
Embodied Energy, MJ/kg 27
160
Embodied Water, L/kg 100
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 140
24
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 940
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 18 to 29
28
Strength to Weight: Bending, points 18 to 25
35
Thermal Diffusivity, mm2/s 8.1
42
Thermal Shock Resistance, points 19 to 30
12

Alloy Composition

Aluminum (Al), % 0
91.5 to 93.6
Beryllium (Be), % 0
0.0030 to 0.0070
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 83.2 to 87.9
0 to 0.15
Magnesium (Mg), % 0
6.2 to 7.5
Manganese (Mn), % 0 to 1.3
0.1 to 0.25
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0.15 to 0.35
0
Titanium (Ti), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15