MakeItFrom.com
Menu (ESC)

AISI 416 Stainless Steel vs. 705.0 Aluminum

AISI 416 stainless steel belongs to the iron alloys classification, while 705.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 416 stainless steel and the bottom bar is 705.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230 to 320
62 to 65
Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 13 to 31
8.4 to 10
Fatigue Strength, MPa 230 to 340
63 to 98
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 510 to 800
240 to 260
Tensile Strength: Yield (Proof), MPa 290 to 600
130

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 680
180
Melting Completion (Liquidus), °C 1530
640
Melting Onset (Solidus), °C 1480
610
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 30
140
Thermal Expansion, µm/m-K 9.9
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
34
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 7.7
2.8
Embodied Carbon, kg CO2/kg material 1.9
8.4
Embodied Energy, MJ/kg 27
150
Embodied Water, L/kg 100
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 140
18 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 940
120 to 130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 18 to 29
24 to 26
Strength to Weight: Bending, points 18 to 25
31 to 32
Thermal Diffusivity, mm2/s 8.1
55
Thermal Shock Resistance, points 19 to 30
11

Alloy Composition

Aluminum (Al), % 0
92.3 to 98.6
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 12 to 14
0 to 0.4
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 83.2 to 87.9
0 to 0.8
Magnesium (Mg), % 0
1.4 to 1.8
Manganese (Mn), % 0 to 1.3
0 to 0.6
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0.15 to 0.35
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 3.3
Residuals, % 0
0 to 0.15