MakeItFrom.com
Menu (ESC)

AISI 416 Stainless Steel vs. EN 1.7715 Steel

Both AISI 416 stainless steel and EN 1.7715 steel are iron alloys. They have 87% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 416 stainless steel and the bottom bar is EN 1.7715 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230 to 320
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 13 to 31
21
Fatigue Strength, MPa 230 to 340
240
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 340 to 480
340
Tensile Strength: Ultimate (UTS), MPa 510 to 800
540
Tensile Strength: Yield (Proof), MPa 290 to 600
340

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 680
420
Melting Completion (Liquidus), °C 1530
1470
Melting Onset (Solidus), °C 1480
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
40
Thermal Expansion, µm/m-K 9.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
2.9
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 1.9
2.2
Embodied Energy, MJ/kg 27
30
Embodied Water, L/kg 100
52

Common Calculations

PREN (Pitting Resistance) 13
2.4
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 140
99
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 940
320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18 to 29
19
Strength to Weight: Bending, points 18 to 25
19
Thermal Diffusivity, mm2/s 8.1
11
Thermal Shock Resistance, points 19 to 30
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.15
0.1 to 0.15
Chromium (Cr), % 12 to 14
0.3 to 0.6
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 83.2 to 87.9
96.5 to 98.3
Manganese (Mn), % 0 to 1.3
0.4 to 0.7
Molybdenum (Mo), % 0
0.5 to 0.7
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.060
0 to 0.025
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0.15 to 0.35
0 to 0.010
Vanadium (V), % 0
0.22 to 0.28