MakeItFrom.com
Menu (ESC)

AISI 416 Stainless Steel vs. Grade 24 Titanium

AISI 416 stainless steel belongs to the iron alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 416 stainless steel and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13 to 31
11
Fatigue Strength, MPa 230 to 340
550
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Shear Strength, MPa 340 to 480
610
Tensile Strength: Ultimate (UTS), MPa 510 to 800
1010
Tensile Strength: Yield (Proof), MPa 290 to 600
940

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 680
340
Melting Completion (Liquidus), °C 1530
1610
Melting Onset (Solidus), °C 1480
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 30
7.1
Thermal Expansion, µm/m-K 9.9
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.0

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 1.9
43
Embodied Energy, MJ/kg 27
710
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 940
4160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 18 to 29
63
Strength to Weight: Bending, points 18 to 25
50
Thermal Diffusivity, mm2/s 8.1
2.9
Thermal Shock Resistance, points 19 to 30
72

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 12 to 14
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 83.2 to 87.9
0 to 0.4
Manganese (Mn), % 0 to 1.3
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0.15 to 0.35
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4