MakeItFrom.com
Menu (ESC)

AISI 416 Stainless Steel vs. C69700 Brass

AISI 416 stainless steel belongs to the iron alloys classification, while C69700 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 416 stainless steel and the bottom bar is C69700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13 to 31
25
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
41
Shear Strength, MPa 340 to 480
300
Tensile Strength: Ultimate (UTS), MPa 510 to 800
470
Tensile Strength: Yield (Proof), MPa 290 to 600
230

Thermal Properties

Latent Heat of Fusion, J/g 270
240
Maximum Temperature: Mechanical, °C 680
160
Melting Completion (Liquidus), °C 1530
930
Melting Onset (Solidus), °C 1480
880
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 30
43
Thermal Expansion, µm/m-K 9.9
19

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
26
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 1.9
2.7
Embodied Energy, MJ/kg 27
44
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 140
99
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 940
250
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18 to 29
16
Strength to Weight: Bending, points 18 to 25
16
Thermal Diffusivity, mm2/s 8.1
13
Thermal Shock Resistance, points 19 to 30
16

Alloy Composition

Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
75 to 80
Iron (Fe), % 83.2 to 87.9
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.3
0 to 0.4
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
2.5 to 3.5
Sulfur (S), % 0.15 to 0.35
0
Zinc (Zn), % 0
13.9 to 22
Residuals, % 0
0 to 0.5