MakeItFrom.com
Menu (ESC)

AISI 416 Stainless Steel vs. N06255 Nickel

AISI 416 stainless steel belongs to the iron alloys classification, while N06255 nickel belongs to the nickel alloys. They have a modest 29% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 416 stainless steel and the bottom bar is N06255 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 13 to 31
45
Fatigue Strength, MPa 230 to 340
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
81
Shear Strength, MPa 340 to 480
460
Tensile Strength: Ultimate (UTS), MPa 510 to 800
660
Tensile Strength: Yield (Proof), MPa 290 to 600
250

Thermal Properties

Latent Heat of Fusion, J/g 270
320
Maximum Temperature: Mechanical, °C 680
1000
Melting Completion (Liquidus), °C 1530
1470
Melting Onset (Solidus), °C 1480
1420
Specific Heat Capacity, J/kg-K 480
450
Thermal Expansion, µm/m-K 9.9
13

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
55
Density, g/cm3 7.7
8.5
Embodied Carbon, kg CO2/kg material 1.9
9.4
Embodied Energy, MJ/kg 27
130
Embodied Water, L/kg 100
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 140
230
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 940
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 18 to 29
22
Strength to Weight: Bending, points 18 to 25
20
Thermal Shock Resistance, points 19 to 30
17

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 12 to 14
23 to 26
Copper (Cu), % 0
0 to 1.2
Iron (Fe), % 83.2 to 87.9
6.0 to 24
Manganese (Mn), % 0 to 1.3
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 9.0
Nickel (Ni), % 0
47 to 52
Phosphorus (P), % 0 to 0.060
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0.15 to 0.35
0 to 0.030
Titanium (Ti), % 0
0 to 0.69
Tungsten (W), % 0
0 to 3.0