MakeItFrom.com
Menu (ESC)

AISI 416Se Stainless Steel vs. AWS E383

Both AISI 416Se stainless steel and AWS E383 are iron alloys. They have 48% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is AISI 416Se stainless steel and the bottom bar is AWS E383.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 23
34
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
80
Tensile Strength: Ultimate (UTS), MPa 540
580

Thermal Properties

Latent Heat of Fusion, J/g 270
320
Melting Completion (Liquidus), °C 1440
1420
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
12
Thermal Expansion, µm/m-K 10
14

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
37
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 1.9
6.4
Embodied Energy, MJ/kg 27
89
Embodied Water, L/kg 100
240

Common Calculations

PREN (Pitting Resistance) 13
40
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
20
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 8.1
3.1
Thermal Shock Resistance, points 20
15

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 12 to 14
26.5 to 29
Copper (Cu), % 0
0.6 to 1.5
Iron (Fe), % 83.1 to 87.9
28.8 to 39.2
Manganese (Mn), % 0 to 1.3
0.5 to 2.5
Molybdenum (Mo), % 0
3.2 to 4.2
Nickel (Ni), % 0
30 to 33
Phosphorus (P), % 0 to 0.060
0 to 0.020
Selenium (Se), % 0.15 to 0.35
0
Silicon (Si), % 0 to 1.0
0 to 0.9
Sulfur (S), % 0 to 0.060
0 to 0.020