MakeItFrom.com
Menu (ESC)

AISI 418 Stainless Steel vs. ASTM A182 Grade F36

Both AISI 418 stainless steel and ASTM A182 grade F36 are iron alloys. They have 83% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 418 stainless steel and the bottom bar is ASTM A182 grade F36.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
220
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
17
Fatigue Strength, MPa 520
330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 680
440
Tensile Strength: Ultimate (UTS), MPa 1100
710
Tensile Strength: Yield (Proof), MPa 850
490

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 770
410
Melting Completion (Liquidus), °C 1500
1460
Melting Onset (Solidus), °C 1460
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 25
39
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 15
3.4
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.7
Embodied Energy, MJ/kg 41
22
Embodied Water, L/kg 110
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 38
25
Strength to Weight: Bending, points 29
22
Thermal Diffusivity, mm2/s 6.7
10
Thermal Shock Resistance, points 40
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0.15 to 0.2
0.1 to 0.17
Chromium (Cr), % 12 to 14
0 to 0.3
Copper (Cu), % 0
0.5 to 0.8
Iron (Fe), % 78.5 to 83.6
95 to 97.1
Manganese (Mn), % 0 to 0.5
0.8 to 1.2
Molybdenum (Mo), % 0 to 0.5
0.25 to 0.5
Nickel (Ni), % 1.8 to 2.2
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.5
0.25 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.025
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0
0 to 0.020