MakeItFrom.com
Menu (ESC)

AISI 422 Stainless Steel vs. C90400 Bronze

AISI 422 stainless steel belongs to the iron alloys classification, while C90400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 422 stainless steel and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260 to 330
77
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 15 to 17
24
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 910 to 1080
310
Tensile Strength: Yield (Proof), MPa 670 to 870
180

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 650
170
Melting Completion (Liquidus), °C 1480
990
Melting Onset (Solidus), °C 1470
850
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 24
75
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.7
12
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
34
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 3.1
3.5
Embodied Energy, MJ/kg 44
56
Embodied Water, L/kg 100
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
65
Resilience: Unit (Modulus of Resilience), kJ/m3 1140 to 1910
150
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32 to 38
10
Strength to Weight: Bending, points 26 to 30
12
Thermal Diffusivity, mm2/s 6.4
23
Thermal Shock Resistance, points 33 to 39
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0.2 to 0.25
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 81.9 to 85.8
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.5 to 1.0
0 to 0.010
Molybdenum (Mo), % 0.9 to 1.3
0
Nickel (Ni), % 0.5 to 1.0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.025
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Tungsten (W), % 0.9 to 1.3
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7