MakeItFrom.com
Menu (ESC)

AISI 430 Stainless Steel vs. S21640 Stainless Steel

Both AISI 430 stainless steel and S21640 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 430 stainless steel and the bottom bar is S21640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
230
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 24
46
Fatigue Strength, MPa 180
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 320
520
Tensile Strength: Ultimate (UTS), MPa 500
740
Tensile Strength: Yield (Proof), MPa 260
350

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 410
490
Maximum Temperature: Mechanical, °C 870
940
Melting Completion (Liquidus), °C 1510
1430
Melting Onset (Solidus), °C 1430
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
15
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
17
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.1
3.6
Embodied Energy, MJ/kg 30
51
Embodied Water, L/kg 120
150

Common Calculations

PREN (Pitting Resistance) 17
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
280
Resilience: Unit (Modulus of Resilience), kJ/m3 170
300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
27
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 6.7
4.0
Thermal Shock Resistance, points 18
16

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.080
Chromium (Cr), % 16 to 18
17.5 to 19.5
Iron (Fe), % 79.1 to 84
63 to 74.3
Manganese (Mn), % 0 to 1.0
3.5 to 6.5
Molybdenum (Mo), % 0
0.5 to 2.0
Nickel (Ni), % 0 to 0.75
4.0 to 6.5
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0
0.080 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.060
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030