MakeItFrom.com
Menu (ESC)

AISI 430FSe Stainless Steel vs. C48500 Brass

AISI 430FSe stainless steel belongs to the iron alloys classification, while C48500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 430FSe stainless steel and the bottom bar is C48500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 23
13 to 40
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
39
Shear Strength, MPa 340
250 to 300
Tensile Strength: Ultimate (UTS), MPa 540
400 to 500
Tensile Strength: Yield (Proof), MPa 310
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 870
120
Melting Completion (Liquidus), °C 1440
900
Melting Onset (Solidus), °C 1390
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
26
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
29

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
23
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 2.1
2.7
Embodied Energy, MJ/kg 30
46
Embodied Water, L/kg 120
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
56 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 250
120 to 500
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20
14 to 17
Strength to Weight: Bending, points 19
15 to 17
Thermal Diffusivity, mm2/s 6.8
38
Thermal Shock Resistance, points 19
13 to 17

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 79.5 to 84
0 to 0.1
Lead (Pb), % 0
1.3 to 2.2
Manganese (Mn), % 0 to 1.3
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.060
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
34.3 to 39.2
Residuals, % 0
0 to 0.4