MakeItFrom.com
Menu (ESC)

AISI 430FSe Stainless Steel vs. C64800 Bronze

AISI 430FSe stainless steel belongs to the iron alloys classification, while C64800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 430FSe stainless steel and the bottom bar is C64800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23
8.0
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Shear Strength, MPa 340
380
Tensile Strength: Ultimate (UTS), MPa 540
640
Tensile Strength: Yield (Proof), MPa 310
630

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 870
200
Melting Completion (Liquidus), °C 1440
1090
Melting Onset (Solidus), °C 1390
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
260
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
65
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
66

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
33
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.1
2.7
Embodied Energy, MJ/kg 30
43
Embodied Water, L/kg 120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
51
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1680
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20
20
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 6.8
75
Thermal Shock Resistance, points 19
23

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 16 to 18
0 to 0.090
Cobalt (Co), % 0
1.0 to 3.0
Copper (Cu), % 0
92.4 to 98.8
Iron (Fe), % 79.5 to 84
0 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.3
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.060
0 to 0.5
Silicon (Si), % 0 to 1.0
0.2 to 1.0
Sulfur (S), % 0 to 0.060
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5