MakeItFrom.com
Menu (ESC)

AISI 430FSe Stainless Steel vs. C96900 Copper-nickel

AISI 430FSe stainless steel belongs to the iron alloys classification, while C96900 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 430FSe stainless steel and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23
4.5
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 540
850
Tensile Strength: Yield (Proof), MPa 310
830

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 870
210
Melting Completion (Liquidus), °C 1440
1060
Melting Onset (Solidus), °C 1390
960
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
39
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.1
4.6
Embodied Energy, MJ/kg 30
72
Embodied Water, L/kg 120
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
38
Resilience: Unit (Modulus of Resilience), kJ/m3 250
2820
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20
27
Strength to Weight: Bending, points 19
23
Thermal Shock Resistance, points 19
30

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
73.6 to 78
Iron (Fe), % 79.5 to 84
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.3
0.050 to 0.3
Nickel (Ni), % 0
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.060
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5