MakeItFrom.com
Menu (ESC)

AISI 430FSe Stainless Steel vs. C99300 Copper

AISI 430FSe stainless steel belongs to the iron alloys classification, while C99300 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 430FSe stainless steel and the bottom bar is C99300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
200
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23
2.0
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
46
Tensile Strength: Ultimate (UTS), MPa 540
660
Tensile Strength: Yield (Proof), MPa 310
380

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 870
250
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1390
1070
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 25
43
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
35
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.1
4.5
Embodied Energy, MJ/kg 30
70
Embodied Water, L/kg 120
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11
Resilience: Unit (Modulus of Resilience), kJ/m3 250
590
Stiffness to Weight: Axial, points 14
8.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 6.8
12
Thermal Shock Resistance, points 19
22

Alloy Composition

Aluminum (Al), % 0
10.7 to 11.5
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 16 to 18
0
Cobalt (Co), % 0
1.0 to 2.0
Copper (Cu), % 0
68.6 to 74.4
Iron (Fe), % 79.5 to 84
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.3
0
Nickel (Ni), % 0
13.5 to 16.5
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.020
Sulfur (S), % 0 to 0.060
0
Tin (Sn), % 0
0 to 0.050
Residuals, % 0
0 to 0.3