MakeItFrom.com
Menu (ESC)

AISI 430FSe Stainless Steel vs. S43940 Stainless Steel

Both AISI 430FSe stainless steel and S43940 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 98% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 430FSe stainless steel and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
21
Fatigue Strength, MPa 210
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 340
310
Tensile Strength: Ultimate (UTS), MPa 540
490
Tensile Strength: Yield (Proof), MPa 310
280

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 410
540
Maximum Temperature: Mechanical, °C 870
890
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
25
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.1
2.6
Embodied Energy, MJ/kg 30
38
Embodied Water, L/kg 120
120

Common Calculations

PREN (Pitting Resistance) 17
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
86
Resilience: Unit (Modulus of Resilience), kJ/m3 250
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 6.8
6.8
Thermal Shock Resistance, points 19
18

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.030
Chromium (Cr), % 16 to 18
17.5 to 18.5
Iron (Fe), % 79.5 to 84
78.2 to 82.1
Manganese (Mn), % 0 to 1.3
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0 to 0.060
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.060
0 to 0.015
Titanium (Ti), % 0
0.1 to 0.6