MakeItFrom.com
Menu (ESC)

AISI 434 Stainless Steel vs. AWS BNi-11

AISI 434 stainless steel belongs to the iron alloys classification, while AWS BNi-11 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (17, in this case) are not shown.

For each property being compared, the top bar is AISI 434 stainless steel and the bottom bar is AWS BNi-11.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 78
74
Tensile Strength: Ultimate (UTS), MPa 520
600

Thermal Properties

Latent Heat of Fusion, J/g 280
340
Melting Completion (Liquidus), °C 1510
1100
Melting Onset (Solidus), °C 1430
970
Specific Heat Capacity, J/kg-K 480
450
Thermal Expansion, µm/m-K 10
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 7.7
9.1
Embodied Carbon, kg CO2/kg material 2.4
11
Embodied Energy, MJ/kg 33
160
Embodied Water, L/kg 120
230

Common Calculations

Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
21
Strength to Weight: Axial, points 19
18
Strength to Weight: Bending, points 18
17
Thermal Shock Resistance, points 19
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
2.2 to 3.1
Carbon (C), % 0 to 0.12
0.3 to 0.5
Chromium (Cr), % 16 to 18
9.0 to 11.8
Cobalt (Co), % 0
0 to 0.1
Iron (Fe), % 78.6 to 83.3
2.5 to 4.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.75 to 1.3
0
Nickel (Ni), % 0
62.9 to 71.2
Phosphorus (P), % 0 to 0.040
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 1.0
3.4 to 4.3
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0 to 0.050
Tungsten (W), % 0
11.5 to 12.8
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5