MakeItFrom.com
Menu (ESC)

AISI 434 Stainless Steel vs. EN 1.0220 Steel

Both AISI 434 stainless steel and EN 1.0220 steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 434 stainless steel and the bottom bar is EN 1.0220 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
110
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 24
23
Fatigue Strength, MPa 220
210
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 330
250
Tensile Strength: Ultimate (UTS), MPa 520
390
Tensile Strength: Yield (Proof), MPa 320
290

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 880
400
Melting Completion (Liquidus), °C 1510
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
51
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.4
1.4
Embodied Energy, MJ/kg 33
18
Embodied Water, L/kg 120
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
80
Resilience: Unit (Modulus of Resilience), kJ/m3 260
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
14
Strength to Weight: Bending, points 18
15
Thermal Diffusivity, mm2/s 6.7
14
Thermal Shock Resistance, points 19
12

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.16
Chromium (Cr), % 16 to 18
0
Iron (Fe), % 78.6 to 83.3
98.2 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.2
Molybdenum (Mo), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.045