MakeItFrom.com
Menu (ESC)

AISI 434 Stainless Steel vs. EN 1.5680 Steel

Both AISI 434 stainless steel and EN 1.5680 steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 434 stainless steel and the bottom bar is EN 1.5680 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 24
23
Fatigue Strength, MPa 220
310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 330
390
Tensile Strength: Ultimate (UTS), MPa 520
620
Tensile Strength: Yield (Proof), MPa 320
440

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 880
420
Melting Completion (Liquidus), °C 1510
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
48
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
5.0
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.4
1.9
Embodied Energy, MJ/kg 33
26
Embodied Water, L/kg 120
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 260
510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 6.7
13
Thermal Shock Resistance, points 19
18

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.15
Chromium (Cr), % 16 to 18
0
Iron (Fe), % 78.6 to 83.3
93.4 to 95
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 0.75 to 1.3
0
Nickel (Ni), % 0
4.8 to 5.3
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.0050
Vanadium (V), % 0
0 to 0.050