MakeItFrom.com
Menu (ESC)

AISI 434 Stainless Steel vs. EN 1.8961 Steel

Both AISI 434 stainless steel and EN 1.8961 steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 434 stainless steel and the bottom bar is EN 1.8961 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
130
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 24
19
Fatigue Strength, MPa 220
150
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 330
270
Tensile Strength: Ultimate (UTS), MPa 520
430
Tensile Strength: Yield (Proof), MPa 320
220

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 880
410
Melting Completion (Liquidus), °C 1510
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
45
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.7
Embodied Energy, MJ/kg 33
23
Embodied Water, L/kg 120
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
70
Resilience: Unit (Modulus of Resilience), kJ/m3 260
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
15
Strength to Weight: Bending, points 18
16
Thermal Diffusivity, mm2/s 6.7
12
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Carbon (C), % 0 to 0.12
0 to 0.16
Chromium (Cr), % 16 to 18
0.35 to 0.85
Copper (Cu), % 0
0.2 to 0.6
Iron (Fe), % 78.6 to 83.3
96.1 to 99.3
Manganese (Mn), % 0 to 1.0
0.15 to 0.7
Molybdenum (Mo), % 0.75 to 1.3
0
Nickel (Ni), % 0
0 to 0.7
Niobium (Nb), % 0
0 to 0.065
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.45
Sulfur (S), % 0 to 0.030
0 to 0.035
Titanium (Ti), % 0
0 to 0.12
Vanadium (V), % 0
0 to 0.14