MakeItFrom.com
Menu (ESC)

AISI 434 Stainless Steel vs. CC498K Bronze

AISI 434 stainless steel belongs to the iron alloys classification, while CC498K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 434 stainless steel and the bottom bar is CC498K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
78
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 24
14
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
41
Tensile Strength: Ultimate (UTS), MPa 520
260
Tensile Strength: Yield (Proof), MPa 320
130

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 880
170
Melting Completion (Liquidus), °C 1510
1000
Melting Onset (Solidus), °C 1430
920
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 25
73
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.4
3.2
Embodied Energy, MJ/kg 33
52
Embodied Water, L/kg 120
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
30
Resilience: Unit (Modulus of Resilience), kJ/m3 260
72
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19
8.1
Strength to Weight: Bending, points 18
10
Thermal Diffusivity, mm2/s 6.7
22
Thermal Shock Resistance, points 19
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
85 to 90
Iron (Fe), % 78.6 to 83.3
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.75 to 1.3
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.030
0 to 0.1
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0
3.0 to 5.0