MakeItFrom.com
Menu (ESC)

AISI 434 Stainless Steel vs. C69700 Brass

AISI 434 stainless steel belongs to the iron alloys classification, while C69700 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 434 stainless steel and the bottom bar is C69700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 24
25
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
41
Shear Strength, MPa 330
300
Tensile Strength: Ultimate (UTS), MPa 520
470
Tensile Strength: Yield (Proof), MPa 320
230

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 880
160
Melting Completion (Liquidus), °C 1510
930
Melting Onset (Solidus), °C 1430
880
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 25
43
Thermal Expansion, µm/m-K 10
19

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.4
2.7
Embodied Energy, MJ/kg 33
44
Embodied Water, L/kg 120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
99
Resilience: Unit (Modulus of Resilience), kJ/m3 260
250
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
16
Strength to Weight: Bending, points 18
16
Thermal Diffusivity, mm2/s 6.7
13
Thermal Shock Resistance, points 19
16

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
75 to 80
Iron (Fe), % 78.6 to 83.3
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.0
0 to 0.4
Molybdenum (Mo), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
2.5 to 3.5
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
13.9 to 22
Residuals, % 0
0 to 0.5