MakeItFrom.com
Menu (ESC)

AISI 436 Stainless Steel vs. EN 1.4028 Stainless Steel

Both AISI 436 stainless steel and EN 1.4028 stainless steel are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 436 stainless steel and the bottom bar is EN 1.4028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
11 to 17
Fatigue Strength, MPa 190
230 to 400
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 320
410 to 550
Tensile Strength: Ultimate (UTS), MPa 500
660 to 930
Tensile Strength: Yield (Proof), MPa 270
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Corrosion, °C 460
390
Maximum Temperature: Mechanical, °C 880
760
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
30
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 12
7.0
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 38
27
Embodied Water, L/kg 120
100

Common Calculations

PREN (Pitting Resistance) 20
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
94 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 190
380 to 1360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
24 to 33
Strength to Weight: Bending, points 18
22 to 27
Thermal Diffusivity, mm2/s 6.7
8.1
Thermal Shock Resistance, points 18
23 to 32

Alloy Composition

Carbon (C), % 0 to 0.12
0.26 to 0.35
Chromium (Cr), % 16 to 18
12 to 14
Iron (Fe), % 77.8 to 83.3
83.1 to 87.7
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0.75 to 1.3
0
Niobium (Nb), % 0 to 0.8
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015