MakeItFrom.com
Menu (ESC)

AISI 439 Stainless Steel vs. EN 1.4526 Stainless Steel

Both AISI 439 stainless steel and EN 1.4526 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 98% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 439 stainless steel and the bottom bar is EN 1.4526 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
25
Fatigue Strength, MPa 170
230
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 310
340
Tensile Strength: Ultimate (UTS), MPa 490
540
Tensile Strength: Yield (Proof), MPa 250
330

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 530
490
Maximum Temperature: Mechanical, °C 890
880
Melting Completion (Liquidus), °C 1510
1450
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
30
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
13
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.3
2.9
Embodied Energy, MJ/kg 34
41
Embodied Water, L/kg 120
120

Common Calculations

PREN (Pitting Resistance) 18
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
120
Resilience: Unit (Modulus of Resilience), kJ/m3 160
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
19
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 6.7
8.1
Thermal Shock Resistance, points 16
19

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 17 to 19
16 to 18
Iron (Fe), % 77.1 to 82.8
77.4 to 83.1
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.4
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0 to 0.030
0 to 0.040
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.2 to 1.1
0