MakeItFrom.com
Menu (ESC)

AM60A Magnesium vs. EN 1.4749 Stainless Steel

AM60A magnesium belongs to the magnesium alloys classification, while EN 1.4749 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AM60A magnesium and the bottom bar is EN 1.4749 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 62
180
Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 8.8
16
Fatigue Strength, MPa 70
190
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
80
Shear Strength, MPa 130
370
Tensile Strength: Ultimate (UTS), MPa 230
600
Tensile Strength: Yield (Proof), MPa 130
320

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 620
1420
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 1000
490
Thermal Conductivity, W/m-K 62
17
Thermal Expansion, µm/m-K 26
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 69
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 1.7
7.6
Embodied Carbon, kg CO2/kg material 23
2.5
Embodied Energy, MJ/kg 160
36
Embodied Water, L/kg 990
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
80
Resilience: Unit (Modulus of Resilience), kJ/m3 190
250
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 71
26
Strength to Weight: Axial, points 37
22
Strength to Weight: Bending, points 49
21
Thermal Diffusivity, mm2/s 37
4.6
Thermal Shock Resistance, points 14
22

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 0
68.5 to 73.7
Magnesium (Mg), % 91.8 to 94.4
0
Manganese (Mn), % 0.13 to 0.6
0 to 1.0
Nickel (Ni), % 0 to 0.030
0
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.22
0