ASTM A182 Grade F122 vs. EN 1.4301 Stainless Steel
Both ASTM A182 grade F122 and EN 1.4301 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is EN 1.4301 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 220 | |
190 to 270 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 23 | |
14 to 46 |
Fatigue Strength, MPa | 320 | |
200 to 330 |
Poisson's Ratio | 0.28 | |
0.28 |
Shear Modulus, GPa | 76 | |
77 |
Shear Strength, MPa | 450 | |
430 to 550 |
Tensile Strength: Ultimate (UTS), MPa | 710 | |
610 to 900 |
Tensile Strength: Yield (Proof), MPa | 450 | |
220 to 570 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
290 |
Maximum Temperature: Mechanical, °C | 600 | |
940 |
Melting Completion (Liquidus), °C | 1490 | |
1430 |
Melting Onset (Solidus), °C | 1440 | |
1380 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 24 | |
15 |
Thermal Expansion, µm/m-K | 13 | |
16 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 10 | |
2.4 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 12 | |
2.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 12 | |
15 |
Density, g/cm3 | 8.0 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 3.0 | |
3.0 |
Embodied Energy, MJ/kg | 44 | |
43 |
Embodied Water, L/kg | 100 | |
140 |
Common Calculations
PREN (Pitting Resistance) | 17 | |
19 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 140 | |
110 to 220 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 520 | |
120 to 820 |
Stiffness to Weight: Axial, points | 14 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 25 | |
22 to 32 |
Strength to Weight: Bending, points | 22 | |
20 to 27 |
Thermal Diffusivity, mm2/s | 6.4 | |
4.0 |
Thermal Shock Resistance, points | 19 | |
14 to 20 |
Alloy Composition
Aluminum (Al), % | 0 to 0.020 | |
0 |
Boron (B), % | 0 to 0.0050 | |
0 |
Carbon (C), % | 0.070 to 0.14 | |
0 to 0.070 |
Chromium (Cr), % | 10 to 11.5 | |
17.5 to 19.5 |
Copper (Cu), % | 0.3 to 1.7 | |
0 |
Iron (Fe), % | 81.3 to 87.7 | |
66.8 to 74.5 |
Manganese (Mn), % | 0 to 0.7 | |
0 to 2.0 |
Molybdenum (Mo), % | 0.25 to 0.6 | |
0 |
Nickel (Ni), % | 0 to 0.5 | |
8.0 to 10.5 |
Niobium (Nb), % | 0.040 to 0.1 | |
0 |
Nitrogen (N), % | 0.040 to 0.1 | |
0 to 0.1 |
Phosphorus (P), % | 0 to 0.020 | |
0 to 0.045 |
Silicon (Si), % | 0 to 0.5 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.010 | |
0 to 0.015 |
Titanium (Ti), % | 0 to 0.010 | |
0 |
Tungsten (W), % | 1.5 to 2.5 | |
0 |
Vanadium (V), % | 0.15 to 0.3 | |
0 |
Zirconium (Zr), % | 0 to 0.010 | |
0 |