MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. 7049 Aluminum

ASTM A182 grade F23 belongs to the iron alloys classification, while 7049 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is 7049 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
140
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 22
6.2 to 7.0
Fatigue Strength, MPa 320
160 to 170
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
27
Shear Strength, MPa 360
300 to 310
Tensile Strength: Ultimate (UTS), MPa 570
510 to 530
Tensile Strength: Yield (Proof), MPa 460
420 to 450

Thermal Properties

Latent Heat of Fusion, J/g 250
370
Maximum Temperature: Mechanical, °C 450
180
Melting Completion (Liquidus), °C 1500
640
Melting Onset (Solidus), °C 1450
480
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 41
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
36
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
10
Density, g/cm3 8.0
3.1
Embodied Carbon, kg CO2/kg material 2.5
8.1
Embodied Energy, MJ/kg 36
140
Embodied Water, L/kg 59
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
31 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 550
1270 to 1440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 20
46 to 47
Strength to Weight: Bending, points 19
46 to 47
Thermal Diffusivity, mm2/s 11
51
Thermal Shock Resistance, points 17
22 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.030
85.7 to 89.5
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 1.9 to 2.6
0.1 to 0.22
Copper (Cu), % 0
1.2 to 1.9
Iron (Fe), % 93.2 to 96.2
0 to 0.35
Magnesium (Mg), % 0
2.0 to 2.9
Manganese (Mn), % 0.1 to 0.6
0 to 0.2
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.0050 to 0.060
0 to 0.1
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
7.2 to 8.2
Residuals, % 0
0 to 0.15