MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. ASTM A228 Music Wire

Both ASTM A182 grade F23 and ASTM A228 music wire are iron alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is ASTM A228 music wire.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
710
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
12
Fatigue Strength, MPa 320
1280
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
72
Shear Strength, MPa 360
1470
Tensile Strength: Ultimate (UTS), MPa 570
2450
Tensile Strength: Yield (Proof), MPa 460
2050

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 450
400
Melting Completion (Liquidus), °C 1500
1450
Melting Onset (Solidus), °C 1450
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
1.8
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.5
1.4
Embodied Energy, MJ/kg 36
19
Embodied Water, L/kg 59
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
280
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
87
Strength to Weight: Bending, points 19
52
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 17
79

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0.7 to 1.0
Chromium (Cr), % 1.9 to 2.6
0
Iron (Fe), % 93.2 to 96.2
98 to 99
Manganese (Mn), % 0.1 to 0.6
0.2 to 0.6
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.5
0.1 to 0.3
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0