MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. EN 1.4371 Stainless Steel

Both ASTM A182 grade F23 and EN 1.4371 stainless steel are iron alloys. They have 74% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is EN 1.4371 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
220 to 230
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
45 to 51
Fatigue Strength, MPa 320
290 to 340
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Shear Strength, MPa 360
520 to 540
Tensile Strength: Ultimate (UTS), MPa 570
740 to 750
Tensile Strength: Yield (Proof), MPa 460
320 to 340

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 450
880
Melting Completion (Liquidus), °C 1500
1410
Melting Onset (Solidus), °C 1450
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 41
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.5
2.6
Embodied Energy, MJ/kg 36
38
Embodied Water, L/kg 59
140

Common Calculations

PREN (Pitting Resistance) 5.7
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
270 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 550
250 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
27
Strength to Weight: Bending, points 19
24
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0 to 0.030
Chromium (Cr), % 1.9 to 2.6
16 to 17.5
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 93.2 to 96.2
66.7 to 74.4
Manganese (Mn), % 0.1 to 0.6
6.0 to 8.0
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
3.5 to 5.5
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0.15 to 0.25
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0