MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. EN 1.4962 Stainless Steel

Both ASTM A182 grade F23 and EN 1.4962 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is EN 1.4962 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
22 to 34
Fatigue Strength, MPa 320
210 to 330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Shear Strength, MPa 360
420 to 440
Tensile Strength: Ultimate (UTS), MPa 570
630 to 690
Tensile Strength: Yield (Proof), MPa 460
260 to 490

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 450
910
Melting Completion (Liquidus), °C 1500
1480
Melting Onset (Solidus), °C 1450
1440
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
14
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
23
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 2.5
4.1
Embodied Energy, MJ/kg 36
59
Embodied Water, L/kg 59
150

Common Calculations

PREN (Pitting Resistance) 5.7
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
140 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 550
170 to 610
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
21 to 24
Strength to Weight: Bending, points 19
20 to 21
Thermal Diffusivity, mm2/s 11
3.7
Thermal Shock Resistance, points 17
14 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0.0015 to 0.0060
Carbon (C), % 0.040 to 0.1
0.070 to 0.15
Chromium (Cr), % 1.9 to 2.6
15.5 to 17.5
Iron (Fe), % 93.2 to 96.2
62.1 to 69
Manganese (Mn), % 0.1 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
12.5 to 14.5
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0.0050 to 0.060
0.4 to 0.7
Tungsten (W), % 1.5 to 1.8
2.5 to 3.0
Vanadium (V), % 0.2 to 0.3
0