MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. EN 1.5521 Steel

Both ASTM A182 grade F23 and EN 1.5521 steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is EN 1.5521 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
130 to 180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
11 to 21
Fatigue Strength, MPa 320
210 to 310
Poisson's Ratio 0.29
0.29
Reduction in Area, % 46
59 to 72
Shear Modulus, GPa 74
73
Shear Strength, MPa 360
310 to 360
Tensile Strength: Ultimate (UTS), MPa 570
430 to 1390
Tensile Strength: Yield (Proof), MPa 460
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 450
400
Melting Completion (Liquidus), °C 1500
1460
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
51
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
1.9
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.5
1.4
Embodied Energy, MJ/kg 36
19
Embodied Water, L/kg 59
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
44 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 550
250 to 630
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
15 to 49
Strength to Weight: Bending, points 19
16 to 35
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 17
13 to 41

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0.00080 to 0.0050
Carbon (C), % 0.040 to 0.1
0.16 to 0.2
Chromium (Cr), % 1.9 to 2.6
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 93.2 to 96.2
98 to 98.9
Manganese (Mn), % 0.1 to 0.6
0.9 to 1.2
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0