MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. Type 4 Magnetic Alloy

ASTM A182 grade F23 belongs to the iron alloys classification, while Type 4 magnetic alloy belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is Type 4 magnetic alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
2.0 to 40
Fatigue Strength, MPa 320
220 to 400
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
73
Shear Strength, MPa 360
420 to 630
Tensile Strength: Ultimate (UTS), MPa 570
620 to 1100
Tensile Strength: Yield (Proof), MPa 460
270 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 450
900
Melting Completion (Liquidus), °C 1500
1420
Melting Onset (Solidus), °C 1450
1370
Specific Heat Capacity, J/kg-K 470
440
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
60
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 2.5
10
Embodied Energy, MJ/kg 36
140
Embodied Water, L/kg 59
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
22 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 550
190 to 2840
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 20
19 to 35
Strength to Weight: Bending, points 19
18 to 27
Thermal Shock Resistance, points 17
21 to 37

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0 to 0.050
Chromium (Cr), % 1.9 to 2.6
0 to 0.3
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 93.2 to 96.2
9.5 to 17.5
Manganese (Mn), % 0.1 to 0.6
0 to 0.8
Molybdenum (Mo), % 0.050 to 0.3
3.5 to 6.0
Nickel (Ni), % 0 to 0.4
79 to 82
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0 to 0.010
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.020
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0