MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. C19800 Copper

ASTM A182 grade F23 belongs to the iron alloys classification, while C19800 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
9.0 to 12
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 360
260 to 330
Tensile Strength: Ultimate (UTS), MPa 570
430 to 550
Tensile Strength: Yield (Proof), MPa 460
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 450
200
Melting Completion (Liquidus), °C 1500
1070
Melting Onset (Solidus), °C 1450
1050
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 41
260
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
61
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
62

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
30
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.5
2.8
Embodied Energy, MJ/kg 36
43
Embodied Water, L/kg 59
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 550
770 to 1320
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
14 to 17
Strength to Weight: Bending, points 19
14 to 17
Thermal Diffusivity, mm2/s 11
75
Thermal Shock Resistance, points 17
15 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 1.9 to 2.6
0
Copper (Cu), % 0
95.7 to 99.47
Iron (Fe), % 93.2 to 96.2
0.020 to 0.5
Magnesium (Mg), % 0
0.1 to 1.0
Manganese (Mn), % 0.1 to 0.6
0
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0.010 to 0.1
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.1 to 1.0
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
0.3 to 1.5
Residuals, % 0
0 to 0.2