MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. C41300 Brass

ASTM A182 grade F23 belongs to the iron alloys classification, while C41300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
2.0 to 44
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
42
Shear Strength, MPa 360
230 to 370
Tensile Strength: Ultimate (UTS), MPa 570
300 to 630
Tensile Strength: Yield (Proof), MPa 460
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 450
180
Melting Completion (Liquidus), °C 1500
1040
Melting Onset (Solidus), °C 1450
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 41
130
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
30
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
31

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
29
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 2.5
2.7
Embodied Energy, MJ/kg 36
44
Embodied Water, L/kg 59
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 550
69 to 1440
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
9.6 to 20
Strength to Weight: Bending, points 19
11 to 19
Thermal Diffusivity, mm2/s 11
40
Thermal Shock Resistance, points 17
11 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 1.9 to 2.6
0
Copper (Cu), % 0
89 to 93
Iron (Fe), % 93.2 to 96.2
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0.1 to 0.6
0
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.7 to 1.3
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
5.1 to 10.3
Residuals, % 0
0 to 0.5