MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. C62300 Bronze

ASTM A182 grade F23 belongs to the iron alloys classification, while C62300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is C62300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
18 to 32
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 360
360 to 390
Tensile Strength: Ultimate (UTS), MPa 570
570 to 630
Tensile Strength: Yield (Proof), MPa 460
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 450
220
Melting Completion (Liquidus), °C 1500
1050
Melting Onset (Solidus), °C 1450
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 41
54
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
12
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
13

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
28
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 2.5
3.1
Embodied Energy, MJ/kg 36
52
Embodied Water, L/kg 59
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
95 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 550
240 to 430
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
19 to 21
Strength to Weight: Bending, points 19
18 to 20
Thermal Diffusivity, mm2/s 11
15
Thermal Shock Resistance, points 17
20 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.030
8.5 to 10
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 1.9 to 2.6
0
Copper (Cu), % 0
83.2 to 89.5
Iron (Fe), % 93.2 to 96.2
2.0 to 4.0
Manganese (Mn), % 0.1 to 0.6
0 to 0.5
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
0 to 1.0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.6
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0
Residuals, % 0
0 to 0.5