MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. C63200 Bronze

ASTM A182 grade F23 belongs to the iron alloys classification, while C63200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is C63200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
17 to 18
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
44
Shear Strength, MPa 360
390 to 440
Tensile Strength: Ultimate (UTS), MPa 570
640 to 710
Tensile Strength: Yield (Proof), MPa 460
310 to 350

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 450
230
Melting Completion (Liquidus), °C 1500
1060
Melting Onset (Solidus), °C 1450
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 41
35
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
29
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 2.5
3.4
Embodied Energy, MJ/kg 36
55
Embodied Water, L/kg 59
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
95 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 550
400 to 510
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 20
21 to 24
Strength to Weight: Bending, points 19
20 to 21
Thermal Diffusivity, mm2/s 11
9.6
Thermal Shock Resistance, points 17
22 to 24

Alloy Composition

Aluminum (Al), % 0 to 0.030
8.7 to 9.5
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 1.9 to 2.6
0
Copper (Cu), % 0
78.8 to 82.6
Iron (Fe), % 93.2 to 96.2
3.5 to 4.3
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.1 to 0.6
1.2 to 2.0
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
4.0 to 4.8
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0
Residuals, % 0
0 to 0.5