MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. C65500 Bronze

ASTM A182 grade F23 belongs to the iron alloys classification, while C65500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is C65500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
4.0 to 70
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 360
260 to 440
Tensile Strength: Ultimate (UTS), MPa 570
360 to 760
Tensile Strength: Yield (Proof), MPa 460
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 450
200
Melting Completion (Liquidus), °C 1500
1030
Melting Onset (Solidus), °C 1450
970
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 41
36
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
29
Density, g/cm3 8.0
8.6
Embodied Carbon, kg CO2/kg material 2.5
2.7
Embodied Energy, MJ/kg 36
42
Embodied Water, L/kg 59
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
11 to 450
Resilience: Unit (Modulus of Resilience), kJ/m3 550
62 to 790
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
12 to 24
Strength to Weight: Bending, points 19
13 to 21
Thermal Diffusivity, mm2/s 11
10
Thermal Shock Resistance, points 17
12 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 1.9 to 2.6
0
Copper (Cu), % 0
91.5 to 96.7
Iron (Fe), % 93.2 to 96.2
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.1 to 0.6
0.5 to 1.3
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
0 to 0.6
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
2.8 to 3.8
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5