MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. C70620 Copper-nickel

ASTM A182 grade F23 belongs to the iron alloys classification, while C70620 copper-nickel belongs to the copper alloys. There are 22 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is C70620 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
46
Tensile Strength: Ultimate (UTS), MPa 570
300 to 570

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 450
220
Melting Completion (Liquidus), °C 1500
1120
Melting Onset (Solidus), °C 1450
1060
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 41
49
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
33
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.5
3.4
Embodied Energy, MJ/kg 36
51
Embodied Water, L/kg 59
300

Common Calculations

Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
9.3 to 18
Strength to Weight: Bending, points 19
11 to 17
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 17
10 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0 to 0.050
Chromium (Cr), % 1.9 to 2.6
0
Copper (Cu), % 0
86.5 to 90
Iron (Fe), % 93.2 to 96.2
1.0 to 1.8
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.1 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
9.0 to 11
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0 to 0.2
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0 to 0.020
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5