MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. S30530 Stainless Steel

Both ASTM A182 grade F23 and S30530 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is S30530 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
46
Fatigue Strength, MPa 320
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Shear Strength, MPa 360
410
Tensile Strength: Ultimate (UTS), MPa 570
590
Tensile Strength: Yield (Proof), MPa 460
230

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 450
970
Melting Completion (Liquidus), °C 1500
1410
Melting Onset (Solidus), °C 1450
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 41
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
18
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.5
3.4
Embodied Energy, MJ/kg 36
48
Embodied Water, L/kg 59
150

Common Calculations

PREN (Pitting Resistance) 5.7
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
210
Resilience: Unit (Modulus of Resilience), kJ/m3 550
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 11
4.1
Thermal Shock Resistance, points 17
13

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0 to 0.080
Chromium (Cr), % 1.9 to 2.6
17 to 20.5
Copper (Cu), % 0
0.75 to 3.5
Iron (Fe), % 93.2 to 96.2
58.4 to 72.5
Manganese (Mn), % 0.1 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.050 to 0.3
0.75 to 1.5
Nickel (Ni), % 0 to 0.4
8.5 to 11.5
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.5
0.5 to 2.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0