MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. S32906 Stainless Steel

Both ASTM A182 grade F23 and S32906 stainless steel are iron alloys. They have 63% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is S32906 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
270
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 22
28
Fatigue Strength, MPa 320
460
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 74
81
Shear Strength, MPa 360
550
Tensile Strength: Ultimate (UTS), MPa 570
850
Tensile Strength: Yield (Proof), MPa 460
620

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 450
1100
Melting Completion (Liquidus), °C 1500
1430
Melting Onset (Solidus), °C 1450
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 41
13
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
20
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.5
3.7
Embodied Energy, MJ/kg 36
52
Embodied Water, L/kg 59
190

Common Calculations

PREN (Pitting Resistance) 5.7
41
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
220
Resilience: Unit (Modulus of Resilience), kJ/m3 550
950
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
30
Strength to Weight: Bending, points 19
26
Thermal Diffusivity, mm2/s 11
3.6
Thermal Shock Resistance, points 17
23

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0 to 0.030
Chromium (Cr), % 1.9 to 2.6
28 to 30
Copper (Cu), % 0
0 to 0.8
Iron (Fe), % 93.2 to 96.2
56.6 to 63.6
Manganese (Mn), % 0.1 to 0.6
0.8 to 1.5
Molybdenum (Mo), % 0.050 to 0.3
1.5 to 2.6
Nickel (Ni), % 0 to 0.4
5.8 to 7.5
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0.3 to 0.4
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0