MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F36 vs. AISI 409 Stainless Steel

Both ASTM A182 grade F36 and AISI 409 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F36 and the bottom bar is AISI 409 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
24
Fatigue Strength, MPa 330
140
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Shear Strength, MPa 440
270
Tensile Strength: Ultimate (UTS), MPa 710
420
Tensile Strength: Yield (Proof), MPa 490
200

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 410
710
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
25
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
6.5
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.7
2.0
Embodied Energy, MJ/kg 22
28
Embodied Water, L/kg 53
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
83
Resilience: Unit (Modulus of Resilience), kJ/m3 650
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
15
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 10
6.7
Thermal Shock Resistance, points 21
15

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Carbon (C), % 0.1 to 0.17
0 to 0.080
Chromium (Cr), % 0 to 0.3
10.5 to 11.7
Copper (Cu), % 0.5 to 0.8
0
Iron (Fe), % 95 to 97.1
84.9 to 89.5
Manganese (Mn), % 0.8 to 1.2
0 to 1.0
Molybdenum (Mo), % 0.25 to 0.5
0
Nickel (Ni), % 1.0 to 1.3
0 to 0.5
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0.25 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0
0 to 0.75
Vanadium (V), % 0 to 0.020
0