MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F36 vs. EN 1.0303 Steel

Both ASTM A182 grade F36 and EN 1.0303 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F36 and the bottom bar is EN 1.0303 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
84 to 120
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
12 to 25
Fatigue Strength, MPa 330
150 to 230
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 440
220 to 260
Tensile Strength: Ultimate (UTS), MPa 710
290 to 410
Tensile Strength: Yield (Proof), MPa 490
200 to 320

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
400
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
53
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
1.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.7
1.4
Embodied Energy, MJ/kg 22
18
Embodied Water, L/kg 53
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
30 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 650
110 to 270
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
10 to 15
Strength to Weight: Bending, points 22
12 to 16
Thermal Diffusivity, mm2/s 10
14
Thermal Shock Resistance, points 21
9.2 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.050
0.020 to 0.060
Carbon (C), % 0.1 to 0.17
0.020 to 0.060
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0.5 to 0.8
0
Iron (Fe), % 95 to 97.1
99.335 to 99.71
Manganese (Mn), % 0.8 to 1.2
0.25 to 0.4
Molybdenum (Mo), % 0.25 to 0.5
0
Nickel (Ni), % 1.0 to 1.3
0
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0.25 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.025
0 to 0.025
Vanadium (V), % 0 to 0.020
0