MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F36 vs. EN 1.4828 Stainless Steel

Both ASTM A182 grade F36 and EN 1.4828 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F36 and the bottom bar is EN 1.4828 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
33
Fatigue Strength, MPa 330
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 440
430
Tensile Strength: Ultimate (UTS), MPa 710
650
Tensile Strength: Yield (Proof), MPa 490
260

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 410
1000
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 39
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
17
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.7
3.4
Embodied Energy, MJ/kg 22
48
Embodied Water, L/kg 53
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
170
Resilience: Unit (Modulus of Resilience), kJ/m3 650
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
23
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 10
4.0
Thermal Shock Resistance, points 21
14

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Carbon (C), % 0.1 to 0.17
0 to 0.2
Chromium (Cr), % 0 to 0.3
19 to 21
Copper (Cu), % 0.5 to 0.8
0
Iron (Fe), % 95 to 97.1
61.1 to 68.5
Manganese (Mn), % 0.8 to 1.2
0 to 2.0
Molybdenum (Mo), % 0.25 to 0.5
0
Nickel (Ni), % 1.0 to 1.3
11 to 13
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0 to 0.1
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0.25 to 0.5
1.5 to 2.5
Sulfur (S), % 0 to 0.025
0 to 0.015
Vanadium (V), % 0 to 0.020
0