MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F36 vs. EN 1.4986 Stainless Steel

Both ASTM A182 grade F36 and EN 1.4986 stainless steel are iron alloys. They have 66% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F36 and the bottom bar is EN 1.4986 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
230
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
18
Fatigue Strength, MPa 330
350
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 440
460
Tensile Strength: Ultimate (UTS), MPa 710
750
Tensile Strength: Yield (Proof), MPa 490
560

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 410
940
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
25
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.7
4.8
Embodied Energy, MJ/kg 22
67
Embodied Water, L/kg 53
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 650
790
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
26
Strength to Weight: Bending, points 22
23
Thermal Diffusivity, mm2/s 10
4.0
Thermal Shock Resistance, points 21
16

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 0
0.050 to 0.1
Carbon (C), % 0.1 to 0.17
0.040 to 0.1
Chromium (Cr), % 0 to 0.3
15.5 to 17.5
Copper (Cu), % 0.5 to 0.8
0
Iron (Fe), % 95 to 97.1
59.4 to 66.6
Manganese (Mn), % 0.8 to 1.2
0 to 1.5
Molybdenum (Mo), % 0.25 to 0.5
1.6 to 2.0
Nickel (Ni), % 1.0 to 1.3
15.5 to 17.5
Niobium (Nb), % 0.015 to 0.045
0.4 to 1.2
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0.25 to 0.5
0.3 to 0.6
Sulfur (S), % 0 to 0.025
0 to 0.030
Vanadium (V), % 0 to 0.020
0