MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F36 vs. EN 1.5535 Steel

Both ASTM A182 grade F36 and EN 1.5535 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F36 and the bottom bar is EN 1.5535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
130 to 180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
11 to 22
Fatigue Strength, MPa 330
210 to 320
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 440
320 to 370
Tensile Strength: Ultimate (UTS), MPa 710
450 to 1490
Tensile Strength: Yield (Proof), MPa 490
300 to 500

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
50
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.4
Embodied Energy, MJ/kg 22
19
Embodied Water, L/kg 53
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
45 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 650
240 to 680
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
16 to 53
Strength to Weight: Bending, points 22
17 to 37
Thermal Diffusivity, mm2/s 10
13
Thermal Shock Resistance, points 21
13 to 44

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0.1 to 0.17
0.2 to 0.25
Chromium (Cr), % 0 to 0.3
0 to 0.3
Copper (Cu), % 0.5 to 0.8
0 to 0.25
Iron (Fe), % 95 to 97.1
97.6 to 98.9
Manganese (Mn), % 0.8 to 1.2
0.9 to 1.2
Molybdenum (Mo), % 0.25 to 0.5
0
Nickel (Ni), % 1.0 to 1.3
0
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0.25 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.025
0 to 0.025
Vanadium (V), % 0 to 0.020
0