ASTM A182 Grade F36 vs. SAE-AISI 4815 Steel
Both ASTM A182 grade F36 and SAE-AISI 4815 steel are iron alloys. They have a very high 98% of their average alloy composition in common.
For each property being compared, the top bar is ASTM A182 grade F36 and the bottom bar is SAE-AISI 4815 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 220 | |
170 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 17 | |
23 |
Fatigue Strength, MPa | 330 | |
260 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
73 |
Shear Strength, MPa | 440 | |
350 |
Tensile Strength: Ultimate (UTS), MPa | 710 | |
550 |
Tensile Strength: Yield (Proof), MPa | 490 | |
370 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 410 | |
410 |
Melting Completion (Liquidus), °C | 1460 | |
1460 |
Melting Onset (Solidus), °C | 1420 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 39 | |
52 |
Thermal Expansion, µm/m-K | 13 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.6 | |
6.6 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.6 | |
7.6 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 3.4 | |
4.3 |
Density, g/cm3 | 7.9 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 1.7 | |
1.8 |
Embodied Energy, MJ/kg | 22 | |
24 |
Embodied Water, L/kg | 53 | |
53 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 | |
110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 650 | |
360 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 25 | |
20 |
Strength to Weight: Bending, points | 22 | |
19 |
Thermal Diffusivity, mm2/s | 10 | |
14 |
Thermal Shock Resistance, points | 21 | |
18 |
Alloy Composition
Aluminum (Al), % | 0 to 0.050 | |
0 |
Carbon (C), % | 0.1 to 0.17 | |
0.13 to 0.18 |
Chromium (Cr), % | 0 to 0.3 | |
0 |
Copper (Cu), % | 0.5 to 0.8 | |
0 |
Iron (Fe), % | 95 to 97.1 | |
94.7 to 95.9 |
Manganese (Mn), % | 0.8 to 1.2 | |
0.4 to 0.6 |
Molybdenum (Mo), % | 0.25 to 0.5 | |
0.2 to 0.3 |
Nickel (Ni), % | 1.0 to 1.3 | |
3.3 to 3.8 |
Niobium (Nb), % | 0.015 to 0.045 | |
0 |
Nitrogen (N), % | 0 to 0.020 | |
0 |
Phosphorus (P), % | 0 to 0.030 | |
0 to 0.035 |
Silicon (Si), % | 0.25 to 0.5 | |
0.15 to 0.35 |
Sulfur (S), % | 0 to 0.025 | |
0 to 0.040 |
Vanadium (V), % | 0 to 0.020 | |
0 |