MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F36 vs. C10500 Copper

ASTM A182 grade F36 belongs to the iron alloys classification, while C10500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F36 and the bottom bar is C10500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17
2.8 to 51
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Shear Strength, MPa 440
150 to 210
Tensile Strength: Ultimate (UTS), MPa 710
220 to 400
Tensile Strength: Yield (Proof), MPa 490
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 410
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
100
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
32
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 1.7
2.6
Embodied Energy, MJ/kg 22
42
Embodied Water, L/kg 53
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 650
24 to 680
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 25
6.8 to 12
Strength to Weight: Bending, points 22
9.1 to 14
Thermal Diffusivity, mm2/s 10
110
Thermal Shock Resistance, points 21
7.8 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Carbon (C), % 0.1 to 0.17
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0.5 to 0.8
99.89 to 99.966
Iron (Fe), % 95 to 97.1
0
Manganese (Mn), % 0.8 to 1.2
0
Molybdenum (Mo), % 0.25 to 0.5
0
Nickel (Ni), % 1.0 to 1.3
0
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0
Oxygen (O), % 0
0 to 0.0010
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.25 to 0.5
0
Silver (Ag), % 0
0.034 to 0.060
Sulfur (S), % 0 to 0.025
0
Vanadium (V), % 0 to 0.020
0
Residuals, % 0
0 to 0.050