MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F36 vs. S30435 Stainless Steel

Both ASTM A182 grade F36 and S30435 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F36 and the bottom bar is S30435 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
51
Fatigue Strength, MPa 330
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 440
370
Tensile Strength: Ultimate (UTS), MPa 710
510
Tensile Strength: Yield (Proof), MPa 490
170

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 410
900
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
16
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
14
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
2.9
Embodied Energy, MJ/kg 22
40
Embodied Water, L/kg 53
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
210
Resilience: Unit (Modulus of Resilience), kJ/m3 650
77
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 10
4.2
Thermal Shock Resistance, points 21
12

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Carbon (C), % 0.1 to 0.17
0 to 0.080
Chromium (Cr), % 0 to 0.3
16 to 18
Copper (Cu), % 0.5 to 0.8
1.5 to 3.0
Iron (Fe), % 95 to 97.1
66.9 to 75.5
Manganese (Mn), % 0.8 to 1.2
0 to 2.0
Molybdenum (Mo), % 0.25 to 0.5
0
Nickel (Ni), % 1.0 to 1.3
7.0 to 9.0
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0.25 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Vanadium (V), % 0 to 0.020
0