MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3VCb vs. AISI 317 Stainless Steel

Both ASTM A182 grade F3VCb and AISI 317 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3VCb and the bottom bar is AISI 317 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
170 to 220
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
35 to 55
Fatigue Strength, MPa 320
250 to 330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
79
Shear Strength, MPa 420
420 to 470
Tensile Strength: Ultimate (UTS), MPa 670
580 to 710
Tensile Strength: Yield (Proof), MPa 460
250 to 420

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 470
590
Melting Completion (Liquidus), °C 1470
1400
Melting Onset (Solidus), °C 1430
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
21
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.4
4.3
Embodied Energy, MJ/kg 33
59
Embodied Water, L/kg 64
160

Common Calculations

PREN (Pitting Resistance) 6.3
31
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
210 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 570
150 to 430
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
20 to 25
Strength to Weight: Bending, points 22
20 to 22
Thermal Diffusivity, mm2/s 11
4.1
Thermal Shock Resistance, points 19
12 to 15

Alloy Composition

Calcium (Ca), % 0.00050 to 0.015
0
Carbon (C), % 0.1 to 0.15
0 to 0.080
Chromium (Cr), % 2.7 to 3.3
18 to 20
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
58 to 68
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.1
3.0 to 4.0
Nickel (Ni), % 0 to 0.25
11 to 15
Niobium (Nb), % 0.015 to 0.070
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.015
0
Vanadium (V), % 0.2 to 0.3
0